If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-38x+323=0
a = 1; b = -38; c = +323;
Δ = b2-4ac
Δ = -382-4·1·323
Δ = 152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{152}=\sqrt{4*38}=\sqrt{4}*\sqrt{38}=2\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-2\sqrt{38}}{2*1}=\frac{38-2\sqrt{38}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+2\sqrt{38}}{2*1}=\frac{38+2\sqrt{38}}{2} $
| 4c-2=14 | | 14.2w-2.14=97.3 | | x×x×x=1000 | | 8x–15=3x+40 | | x+2/5=6/7 | | 9^5x=11 | | 4.9t^2-15t-2=0 | | (3/5)m-10=-19 | | 5n=86 | | 7x-8-2x=32 | | 3/5m-10=-19 | | 6k-34=-6k+14 | | x=10-15 | | 2x+2=758 | | 2(x-7)=8x-50 | | -1/6x-(-3)=-39 | | -8-12=32+2x | | 10(x-6)=5x-25 | | -32=4x+18 | | 2(3a+5)=10 | | 2x=-3+x= | | 44-20y=0 | | -4n+17=-3(1+3n) | | 3(x+8)=2x+27 | | 35+14g=0 | | 56+y=y+76 | | 4(x+1)=8x-20 | | (x-2)(x=14)=45 | | 56=y=y=76 | | 4(3n+3)=12+6n | | x=(24-2x)*(36-2x)*(x) | | 7(x-4)=10x-28 |